aes.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. //
  2. // Created by #Suyghur, on 2021/10/15.
  3. //
  4. #include "include/aes.h"
  5. /*
  6. This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
  7. Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
  8. The implementation is verified against the test vectors in:
  9. National Institute of Standards and Technology Special Publication 800-38A 2001 ED
  10. ECB-AES128
  11. ----------
  12. plain-text:
  13. 6bc1bee22e409f96e93d7e117393172a
  14. ae2d8a571e03ac9c9eb76fac45af8e51
  15. 30c81c46a35ce411e5fbc1191a0a52ef
  16. f69f2445df4f9b17ad2b417be66c3710
  17. key:
  18. 2b7e151628aed2a6abf7158809cf4f3c
  19. resulting cipher
  20. 3ad77bb40d7a3660a89ecaf32466ef97
  21. f5d3d58503b9699de785895a96fdbaaf
  22. 43b1cd7f598ece23881b00e3ed030688
  23. 7b0c785e27e8ad3f8223207104725dd4
  24. NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
  25. You should pad the end of the string with zeros if this is not the case.
  26. For AES192/256 the key size is proportionally larger.
  27. */
  28. /*****************************************************************************/
  29. /* Includes: */
  30. /*****************************************************************************/
  31. #include <cstring>
  32. #include "include/aes.h"
  33. /*****************************************************************************/
  34. /* Defines: */
  35. /*****************************************************************************/
  36. // The number of columns comprising a state in AES. This is a constant in AES. Value=4
  37. #define Nb 4
  38. #define BLOCKLEN 16 // Block length in bytes AES is 128b block only
  39. #if defined(AES256) && (AES256 == 1)
  40. #define Nk 8
  41. #define KEYLEN 32
  42. #define Nr 14
  43. #define keyExpSize 240
  44. #elif defined(AES192) && (AES192 == 1)
  45. #define Nk 6
  46. #define KEYLEN 24
  47. #define Nr 12
  48. #define keyExpSize 208
  49. #else
  50. #define Nk 4 // The number of 32 bit words in a key.
  51. #define KEYLEN 16 // Key length in bytes
  52. #define Nr 10 // The number of rounds in AES Cipher.
  53. #define keyExpSize 176
  54. #endif
  55. // jcallan@github points out that declaring Multiply as a function
  56. // reduces code size considerably with the Keil ARM compiler.
  57. // See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
  58. #ifndef MULTIPLY_AS_A_FUNCTION
  59. #define MULTIPLY_AS_A_FUNCTION 0
  60. #endif
  61. /*****************************************************************************/
  62. /* Private variables: */
  63. /*****************************************************************************/
  64. // state - array holding the intermediate results during decryption.
  65. typedef uint8_t state_t[4][4];
  66. static state_t *state;
  67. // The array that stores the round keys.
  68. static uint8_t RoundKey[keyExpSize];
  69. // The Key input to the AES Program
  70. static const uint8_t *Key;
  71. #if defined(CBC) && CBC
  72. // Initial Vector used only for CBC mode
  73. static uint8_t *Iv;
  74. #endif
  75. // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
  76. // The numbers below can be computed dynamically trading ROM for RAM -
  77. // This can be useful in (embedded) bootloader applications, where ROM is often limited.
  78. static const uint8_t sbox[256] = {
  79. //0 1 2 3 4 5 6 7 8 9 A B C D E F
  80. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  81. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  82. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  83. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  84. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  85. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  86. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  87. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  88. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  89. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  90. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  91. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  92. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  93. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  94. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  95. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
  96. };
  97. static const uint8_t rsbox[256] = {
  98. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  99. 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  100. 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  101. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  102. 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  103. 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  104. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  105. 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  106. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  107. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  108. 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  109. 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  110. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  111. 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  112. 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  113. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
  114. };
  115. // The round constant word array, Rcon[i], contains the values given by
  116. // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
  117. static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
  118. /*****************************************************************************/
  119. /* Private functions: */
  120. /*****************************************************************************/
  121. static uint8_t getSBoxValue(uint8_t num) {
  122. return sbox[num];
  123. }
  124. static uint8_t getSBoxInvert(uint8_t num) {
  125. return rsbox[num];
  126. }
  127. // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
  128. static void KeyExpansion(void) {
  129. uint32_t i, k;
  130. uint8_t tempa[4]; // Used for the column/row operations
  131. // The first round key is the key itself.
  132. for (i = 0; i < Nk; ++i) {
  133. RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
  134. RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
  135. RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
  136. RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  137. }
  138. // All other round keys are found from the previous round keys.
  139. //i == Nk
  140. for (; i < Nb * (Nr + 1); ++i) {
  141. {
  142. tempa[0] = RoundKey[(i - 1) * 4 + 0];
  143. tempa[1] = RoundKey[(i - 1) * 4 + 1];
  144. tempa[2] = RoundKey[(i - 1) * 4 + 2];
  145. tempa[3] = RoundKey[(i - 1) * 4 + 3];
  146. }
  147. if (i % Nk == 0) {
  148. // This function shifts the 4 bytes in a word to the left once.
  149. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
  150. // Function RotWord()
  151. {
  152. k = tempa[0];
  153. tempa[0] = tempa[1];
  154. tempa[1] = tempa[2];
  155. tempa[2] = tempa[3];
  156. tempa[3] = k;
  157. }
  158. // SubWord() is a function that takes a four-byte input word and
  159. // applies the S-box to each of the four bytes to produce an output word.
  160. // Function Subword()
  161. {
  162. tempa[0] = getSBoxValue(tempa[0]);
  163. tempa[1] = getSBoxValue(tempa[1]);
  164. tempa[2] = getSBoxValue(tempa[2]);
  165. tempa[3] = getSBoxValue(tempa[3]);
  166. }
  167. tempa[0] = tempa[0] ^ Rcon[i / Nk];
  168. }
  169. #if defined(AES256) && (AES256 == 1)
  170. if (i % Nk == 4)
  171. {
  172. // Function Subword()
  173. {
  174. tempa[0] = getSBoxValue(tempa[0]);
  175. tempa[1] = getSBoxValue(tempa[1]);
  176. tempa[2] = getSBoxValue(tempa[2]);
  177. tempa[3] = getSBoxValue(tempa[3]);
  178. }
  179. }
  180. #endif
  181. RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
  182. RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
  183. RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
  184. RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
  185. }
  186. }
  187. // This function adds the round key to state.
  188. // The round key is added to the state by an XOR function.
  189. static void AddRoundKey(uint8_t round) {
  190. uint8_t i, j;
  191. for (i = 0; i < 4; ++i) {
  192. for (j = 0; j < 4; ++j) {
  193. (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
  194. }
  195. }
  196. }
  197. // The SubBytes Function Substitutes the values in the
  198. // state matrix with values in an S-box.
  199. static void SubBytes(void) {
  200. uint8_t i, j;
  201. for (i = 0; i < 4; ++i) {
  202. for (j = 0; j < 4; ++j) {
  203. (*state)[j][i] = getSBoxValue((*state)[j][i]);
  204. }
  205. }
  206. }
  207. // The ShiftRows() function shifts the rows in the state to the left.
  208. // Each row is shifted with different offset.
  209. // Offset = Row number. So the first row is not shifted.
  210. static void ShiftRows(void) {
  211. uint8_t temp;
  212. // Rotate first row 1 columns to left
  213. temp = (*state)[0][1];
  214. (*state)[0][1] = (*state)[1][1];
  215. (*state)[1][1] = (*state)[2][1];
  216. (*state)[2][1] = (*state)[3][1];
  217. (*state)[3][1] = temp;
  218. // Rotate second row 2 columns to left
  219. temp = (*state)[0][2];
  220. (*state)[0][2] = (*state)[2][2];
  221. (*state)[2][2] = temp;
  222. temp = (*state)[1][2];
  223. (*state)[1][2] = (*state)[3][2];
  224. (*state)[3][2] = temp;
  225. // Rotate third row 3 columns to left
  226. temp = (*state)[0][3];
  227. (*state)[0][3] = (*state)[3][3];
  228. (*state)[3][3] = (*state)[2][3];
  229. (*state)[2][3] = (*state)[1][3];
  230. (*state)[1][3] = temp;
  231. }
  232. static uint8_t xtime(uint8_t x) {
  233. return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
  234. }
  235. // MixColumns function mixes the columns of the state matrix
  236. static void MixColumns(void) {
  237. uint8_t i;
  238. uint8_t Tmp, Tm, t;
  239. for (i = 0; i < 4; ++i) {
  240. t = (*state)[i][0];
  241. Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
  242. Tm = (*state)[i][0] ^ (*state)[i][1];
  243. Tm = xtime(Tm);
  244. (*state)[i][0] ^= Tm ^ Tmp;
  245. Tm = (*state)[i][1] ^ (*state)[i][2];
  246. Tm = xtime(Tm);
  247. (*state)[i][1] ^= Tm ^ Tmp;
  248. Tm = (*state)[i][2] ^ (*state)[i][3];
  249. Tm = xtime(Tm);
  250. (*state)[i][2] ^= Tm ^ Tmp;
  251. Tm = (*state)[i][3] ^ t;
  252. Tm = xtime(Tm);
  253. (*state)[i][3] ^= Tm ^ Tmp;
  254. }
  255. }
  256. // Multiply is used to multiply numbers in the field GF(2^8)
  257. #if MULTIPLY_AS_A_FUNCTION
  258. static uint8_t Multiply(uint8_t x, uint8_t y)
  259. {
  260. return (((y & 1) * x) ^
  261. ((y>>1 & 1) * xtime(x)) ^
  262. ((y>>2 & 1) * xtime(xtime(x))) ^
  263. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
  264. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  265. }
  266. #else
  267. #define Multiply(x, y) \
  268. ( ((y & 1) * x) ^ \
  269. ((y>>1 & 1) * xtime(x)) ^ \
  270. ((y>>2 & 1) * xtime(xtime(x))) ^ \
  271. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
  272. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
  273. #endif
  274. // MixColumns function mixes the columns of the state matrix.
  275. // The method used to multiply may be difficult to understand for the inexperienced.
  276. // Please use the references to gain more information.
  277. static void InvMixColumns(void) {
  278. int i;
  279. uint8_t a, b, c, d;
  280. for (i = 0; i < 4; ++i) {
  281. a = (*state)[i][0];
  282. b = (*state)[i][1];
  283. c = (*state)[i][2];
  284. d = (*state)[i][3];
  285. (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
  286. (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
  287. (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
  288. (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  289. }
  290. }
  291. // The SubBytes Function Substitutes the values in the
  292. // state matrix with values in an S-box.
  293. static void InvSubBytes(void) {
  294. uint8_t i, j;
  295. for (i = 0; i < 4; ++i) {
  296. for (j = 0; j < 4; ++j) {
  297. (*state)[j][i] = getSBoxInvert((*state)[j][i]);
  298. }
  299. }
  300. }
  301. static void InvShiftRows(void) {
  302. uint8_t temp;
  303. // Rotate first row 1 columns to right
  304. temp = (*state)[3][1];
  305. (*state)[3][1] = (*state)[2][1];
  306. (*state)[2][1] = (*state)[1][1];
  307. (*state)[1][1] = (*state)[0][1];
  308. (*state)[0][1] = temp;
  309. // Rotate second row 2 columns to right
  310. temp = (*state)[0][2];
  311. (*state)[0][2] = (*state)[2][2];
  312. (*state)[2][2] = temp;
  313. temp = (*state)[1][2];
  314. (*state)[1][2] = (*state)[3][2];
  315. (*state)[3][2] = temp;
  316. // Rotate third row 3 columns to right
  317. temp = (*state)[0][3];
  318. (*state)[0][3] = (*state)[1][3];
  319. (*state)[1][3] = (*state)[2][3];
  320. (*state)[2][3] = (*state)[3][3];
  321. (*state)[3][3] = temp;
  322. }
  323. // Cipher is the main function that encrypts the PlainText.
  324. static void Cipher(void) {
  325. uint8_t round = 0;
  326. // Add the First round key to the state before starting the rounds.
  327. AddRoundKey(0);
  328. // There will be Nr rounds.
  329. // The first Nr-1 rounds are identical.
  330. // These Nr-1 rounds are executed in the loop below.
  331. for (round = 1; round < Nr; ++round) {
  332. SubBytes();
  333. ShiftRows();
  334. MixColumns();
  335. AddRoundKey(round);
  336. }
  337. // The last round is given below.
  338. // The MixColumns function is not here in the last round.
  339. SubBytes();
  340. ShiftRows();
  341. AddRoundKey(Nr);
  342. }
  343. static void InvCipher(void) {
  344. uint8_t round = 0;
  345. // Add the First round key to the state before starting the rounds.
  346. AddRoundKey(Nr);
  347. // There will be Nr rounds.
  348. // The first Nr-1 rounds are identical.
  349. // These Nr-1 rounds are executed in the loop below.
  350. for (round = (Nr - 1); round > 0; --round) {
  351. InvShiftRows();
  352. InvSubBytes();
  353. AddRoundKey(round);
  354. InvMixColumns();
  355. }
  356. // The last round is given below.
  357. // The MixColumns function is not here in the last round.
  358. InvShiftRows();
  359. InvSubBytes();
  360. AddRoundKey(0);
  361. }
  362. /*****************************************************************************/
  363. /* Public functions: */
  364. /*****************************************************************************/
  365. #if defined(ECB) && (ECB == 1)
  366. void AesEcbEncrypt(const uint8_t *input, const uint8_t *key, uint8_t *output, const uint32_t length) {
  367. // Copy input to output, and work in-memory on output
  368. memcpy(output, input, length);
  369. state = (state_t *) output;
  370. Key = key;
  371. KeyExpansion();
  372. // The next function call encrypts the PlainText with the Key using AES algorithm.
  373. Cipher();
  374. }
  375. void AesEcbDecrypt(const uint8_t *input, const uint8_t *key, uint8_t *output, const uint32_t length) {
  376. // Copy input to output, and work in-memory on output
  377. memcpy(output, input, length);
  378. state = (state_t *) output;
  379. // The KeyExpansion routine must be called before encryption.
  380. Key = key;
  381. KeyExpansion();
  382. InvCipher();
  383. }
  384. #endif // #if defined(ECB) && (ECB == 1)
  385. #if defined(CBC) && (CBC == 1)
  386. static void XorWithIv(uint8_t *buf) {
  387. uint8_t i;
  388. for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
  389. {
  390. buf[i] ^= Iv[i];
  391. }
  392. }
  393. void AesCbcEncryptBuffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *iv) {
  394. uintptr_t i;
  395. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  396. // Skip the key expansion if key is passed as 0
  397. if (nullptr != key) {
  398. Key = key;
  399. KeyExpansion();
  400. }
  401. if (iv != 0) {
  402. Iv = (uint8_t *) iv;
  403. }
  404. for (i = 0; i < length; i += BLOCKLEN) {
  405. memcpy(output, input, BLOCKLEN);
  406. XorWithIv(output);
  407. state = (state_t *) output;
  408. Cipher();
  409. Iv = output;
  410. input += BLOCKLEN;
  411. output += BLOCKLEN;
  412. //printf("Step %d - %d", i/16, i);
  413. }
  414. if (extra) {
  415. memcpy(output, input, extra);
  416. memset((output + extra), 0, (BLOCKLEN - extra));
  417. XorWithIv(output);
  418. state = (state_t *) output;
  419. Cipher();
  420. }
  421. }
  422. void AesCbcDecryptBuffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *iv) {
  423. uintptr_t i;
  424. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  425. // Skip the key expansion if key is passed as 0
  426. if (nullptr != key) {
  427. Key = key;
  428. KeyExpansion();
  429. }
  430. // If iv is passed as 0, we continue to encrypt without re-setting the Iv
  431. if (iv != nullptr) {
  432. Iv = (uint8_t *) iv;
  433. }
  434. for (i = 0; i < length; i += BLOCKLEN) {
  435. memcpy(output, input, BLOCKLEN);
  436. state = (state_t *) output;
  437. InvCipher();
  438. XorWithIv(output);
  439. Iv = input;
  440. input += BLOCKLEN;
  441. output += BLOCKLEN;
  442. }
  443. if (extra) {
  444. memcpy(output, input, extra);
  445. state = (state_t *) output;
  446. InvCipher();
  447. }
  448. }
  449. #endif // #if defined(CBC) && (CBC == 1)
  450. #if defined(CTR) && (CTR == 1)
  451. /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
  452. void AesCtrXcryptBuffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *nonce) {
  453. uint8_t buffer[BLOCKLEN], counter[BLOCKLEN];
  454. memcpy(counter, nonce, BLOCKLEN);
  455. Key = key;
  456. KeyExpansion();
  457. int j;
  458. unsigned i;
  459. for (i = 0; i < length; ++i) {
  460. if ((i & (BLOCKLEN - 1)) == 0) {
  461. memcpy(buffer, counter, BLOCKLEN);
  462. state = (state_t *) buffer;
  463. Cipher();
  464. /* Increment counter and handle overflow */
  465. for (j = (BLOCKLEN - 1); j >= 0; --j) {
  466. counter[j] += 1;
  467. /* Break if no overflow, keep going otherwise */
  468. if (counter[j] != 0) {
  469. break;
  470. }
  471. }
  472. }
  473. output[i] = (input[i] ^ buffer[(i & (BLOCKLEN - 1))]);
  474. }
  475. }
  476. #endif // #if defined(CTR) && (CTR == 1)