aes.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. //
  2. // Created by #Suyghur, on 2021/06/11.
  3. //
  4. /*
  5. This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
  6. Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
  7. The implementation is verified against the test vectors in:
  8. National Institute of Standards and Technology Special Publication 800-38A 2001 ED
  9. ECB-AES128
  10. ----------
  11. plain-text:
  12. 6bc1bee22e409f96e93d7e117393172a
  13. ae2d8a571e03ac9c9eb76fac45af8e51
  14. 30c81c46a35ce411e5fbc1191a0a52ef
  15. f69f2445df4f9b17ad2b417be66c3710
  16. key:
  17. 2b7e151628aed2a6abf7158809cf4f3c
  18. resulting cipher
  19. 3ad77bb40d7a3660a89ecaf32466ef97
  20. f5d3d58503b9699de785895a96fdbaaf
  21. 43b1cd7f598ece23881b00e3ed030688
  22. 7b0c785e27e8ad3f8223207104725dd4
  23. NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
  24. You should pad the end of the string with zeros if this is not the case.
  25. For AES192/256 the key size is proportionally larger.
  26. */
  27. /*****************************************************************************/
  28. /* Includes: */
  29. /*****************************************************************************/
  30. #include <string.h>
  31. #include "include/aes/aes.h"
  32. /*****************************************************************************/
  33. /* Defines: */
  34. /*****************************************************************************/
  35. // The number of columns comprising a state in AES. This is a constant in AES. Value=4
  36. #define Nb 4
  37. #define BLOCKLEN 16 // Block length in bytes AES is 128b block only
  38. #if defined(AES256) && (AES256 == 1)
  39. #define Nk 8
  40. #define KEYLEN 32
  41. #define Nr 14
  42. #define keyExpSize 240
  43. #elif defined(AES192) && (AES192 == 1)
  44. #define Nk 6
  45. #define KEYLEN 24
  46. #define Nr 12
  47. #define keyExpSize 208
  48. #else
  49. #define Nk 4 // The number of 32 bit words in a key.
  50. #define KEYLEN 16 // Key length in bytes
  51. #define Nr 10 // The number of rounds in AES Cipher.
  52. #define keyExpSize 176
  53. #endif
  54. // jcallan@github points out that declaring Multiply as a function
  55. // reduces code size considerably with the Keil ARM compiler.
  56. // See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
  57. #ifndef MULTIPLY_AS_A_FUNCTION
  58. #define MULTIPLY_AS_A_FUNCTION 0
  59. #endif
  60. /*****************************************************************************/
  61. /* Private variables: */
  62. /*****************************************************************************/
  63. // state - array holding the intermediate results during decryption.
  64. typedef uint8_t state_t[4][4];
  65. static state_t *state;
  66. // The array that stores the round keys.
  67. static uint8_t RoundKey[keyExpSize];
  68. // The Key input to the AES Program
  69. static const uint8_t *Key;
  70. #if defined(CBC) && CBC
  71. // Initial Vector used only for CBC mode
  72. static uint8_t *Iv;
  73. #endif
  74. // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
  75. // The numbers below can be computed dynamically trading ROM for RAM -
  76. // This can be useful in (embedded) bootloader applications, where ROM is often limited.
  77. static const uint8_t sbox[256] = {
  78. //0 1 2 3 4 5 6 7 8 9 A B C D E F
  79. 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
  80. 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
  81. 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
  82. 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
  83. 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
  84. 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
  85. 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
  86. 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
  87. 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
  88. 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
  89. 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
  90. 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
  91. 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
  92. 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
  93. 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
  94. 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
  95. };
  96. static const uint8_t rsbox[256] = {
  97. 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
  98. 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
  99. 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
  100. 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
  101. 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
  102. 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
  103. 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
  104. 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  105. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
  106. 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
  107. 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
  108. 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
  109. 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
  110. 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
  111. 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
  112. 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
  113. };
  114. // The round constant word array, Rcon[i], contains the values given by
  115. // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
  116. static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
  117. /*****************************************************************************/
  118. /* Private functions: */
  119. /*****************************************************************************/
  120. static uint8_t getSBoxValue(uint8_t num) {
  121. return sbox[num];
  122. }
  123. static uint8_t getSBoxInvert(uint8_t num) {
  124. return rsbox[num];
  125. }
  126. // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
  127. static void KeyExpansion(void) {
  128. uint32_t i, k;
  129. uint8_t tempa[4]; // Used for the column/row operations
  130. // The first round key is the key itself.
  131. for (i = 0; i < Nk; ++i) {
  132. RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
  133. RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
  134. RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
  135. RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
  136. }
  137. // All other round keys are found from the previous round keys.
  138. //i == Nk
  139. for (; i < Nb * (Nr + 1); ++i) {
  140. {
  141. tempa[0] = RoundKey[(i - 1) * 4 + 0];
  142. tempa[1] = RoundKey[(i - 1) * 4 + 1];
  143. tempa[2] = RoundKey[(i - 1) * 4 + 2];
  144. tempa[3] = RoundKey[(i - 1) * 4 + 3];
  145. }
  146. if (i % Nk == 0) {
  147. // This function shifts the 4 bytes in a word to the left once.
  148. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
  149. // Function RotWord()
  150. {
  151. k = tempa[0];
  152. tempa[0] = tempa[1];
  153. tempa[1] = tempa[2];
  154. tempa[2] = tempa[3];
  155. tempa[3] = k;
  156. }
  157. // SubWord() is a function that takes a four-byte input word and
  158. // applies the S-box to each of the four bytes to produce an output word.
  159. // Function Subword()
  160. {
  161. tempa[0] = getSBoxValue(tempa[0]);
  162. tempa[1] = getSBoxValue(tempa[1]);
  163. tempa[2] = getSBoxValue(tempa[2]);
  164. tempa[3] = getSBoxValue(tempa[3]);
  165. }
  166. tempa[0] = tempa[0] ^ Rcon[i / Nk];
  167. }
  168. #if defined(AES256) && (AES256 == 1)
  169. if (i % Nk == 4)
  170. {
  171. // Function Subword()
  172. {
  173. tempa[0] = getSBoxValue(tempa[0]);
  174. tempa[1] = getSBoxValue(tempa[1]);
  175. tempa[2] = getSBoxValue(tempa[2]);
  176. tempa[3] = getSBoxValue(tempa[3]);
  177. }
  178. }
  179. #endif
  180. RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
  181. RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
  182. RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
  183. RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
  184. }
  185. }
  186. // This function adds the round key to state.
  187. // The round key is added to the state by an XOR function.
  188. static void AddRoundKey(uint8_t round) {
  189. uint8_t i, j;
  190. for (i = 0; i < 4; ++i) {
  191. for (j = 0; j < 4; ++j) {
  192. (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
  193. }
  194. }
  195. }
  196. // The SubBytes Function Substitutes the values in the
  197. // state matrix with values in an S-box.
  198. static void SubBytes(void) {
  199. uint8_t i, j;
  200. for (i = 0; i < 4; ++i) {
  201. for (j = 0; j < 4; ++j) {
  202. (*state)[j][i] = getSBoxValue((*state)[j][i]);
  203. }
  204. }
  205. }
  206. // The ShiftRows() function shifts the rows in the state to the left.
  207. // Each row is shifted with different offset.
  208. // Offset = Row number. So the first row is not shifted.
  209. static void ShiftRows(void) {
  210. uint8_t temp;
  211. // Rotate first row 1 columns to left
  212. temp = (*state)[0][1];
  213. (*state)[0][1] = (*state)[1][1];
  214. (*state)[1][1] = (*state)[2][1];
  215. (*state)[2][1] = (*state)[3][1];
  216. (*state)[3][1] = temp;
  217. // Rotate second row 2 columns to left
  218. temp = (*state)[0][2];
  219. (*state)[0][2] = (*state)[2][2];
  220. (*state)[2][2] = temp;
  221. temp = (*state)[1][2];
  222. (*state)[1][2] = (*state)[3][2];
  223. (*state)[3][2] = temp;
  224. // Rotate third row 3 columns to left
  225. temp = (*state)[0][3];
  226. (*state)[0][3] = (*state)[3][3];
  227. (*state)[3][3] = (*state)[2][3];
  228. (*state)[2][3] = (*state)[1][3];
  229. (*state)[1][3] = temp;
  230. }
  231. static uint8_t xtime(uint8_t x) {
  232. return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
  233. }
  234. // MixColumns function mixes the columns of the state matrix
  235. static void MixColumns(void) {
  236. uint8_t i;
  237. uint8_t Tmp, Tm, t;
  238. for (i = 0; i < 4; ++i) {
  239. t = (*state)[i][0];
  240. Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
  241. Tm = (*state)[i][0] ^ (*state)[i][1];
  242. Tm = xtime(Tm);
  243. (*state)[i][0] ^= Tm ^ Tmp;
  244. Tm = (*state)[i][1] ^ (*state)[i][2];
  245. Tm = xtime(Tm);
  246. (*state)[i][1] ^= Tm ^ Tmp;
  247. Tm = (*state)[i][2] ^ (*state)[i][3];
  248. Tm = xtime(Tm);
  249. (*state)[i][2] ^= Tm ^ Tmp;
  250. Tm = (*state)[i][3] ^ t;
  251. Tm = xtime(Tm);
  252. (*state)[i][3] ^= Tm ^ Tmp;
  253. }
  254. }
  255. // Multiply is used to multiply numbers in the field GF(2^8)
  256. #if MULTIPLY_AS_A_FUNCTION
  257. static uint8_t Multiply(uint8_t x, uint8_t y)
  258. {
  259. return (((y & 1) * x) ^
  260. ((y>>1 & 1) * xtime(x)) ^
  261. ((y>>2 & 1) * xtime(xtime(x))) ^
  262. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
  263. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
  264. }
  265. #else
  266. #define Multiply(x, y) \
  267. ( ((y & 1) * x) ^ \
  268. ((y>>1 & 1) * xtime(x)) ^ \
  269. ((y>>2 & 1) * xtime(xtime(x))) ^ \
  270. ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
  271. ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
  272. #endif
  273. // MixColumns function mixes the columns of the state matrix.
  274. // The method used to multiply may be difficult to understand for the inexperienced.
  275. // Please use the references to gain more information.
  276. static void InvMixColumns(void) {
  277. int i;
  278. uint8_t a, b, c, d;
  279. for (i = 0; i < 4; ++i) {
  280. a = (*state)[i][0];
  281. b = (*state)[i][1];
  282. c = (*state)[i][2];
  283. d = (*state)[i][3];
  284. (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
  285. (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
  286. (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
  287. (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
  288. }
  289. }
  290. // The SubBytes Function Substitutes the values in the
  291. // state matrix with values in an S-box.
  292. static void InvSubBytes(void) {
  293. uint8_t i, j;
  294. for (i = 0; i < 4; ++i) {
  295. for (j = 0; j < 4; ++j) {
  296. (*state)[j][i] = getSBoxInvert((*state)[j][i]);
  297. }
  298. }
  299. }
  300. static void InvShiftRows(void) {
  301. uint8_t temp;
  302. // Rotate first row 1 columns to right
  303. temp = (*state)[3][1];
  304. (*state)[3][1] = (*state)[2][1];
  305. (*state)[2][1] = (*state)[1][1];
  306. (*state)[1][1] = (*state)[0][1];
  307. (*state)[0][1] = temp;
  308. // Rotate second row 2 columns to right
  309. temp = (*state)[0][2];
  310. (*state)[0][2] = (*state)[2][2];
  311. (*state)[2][2] = temp;
  312. temp = (*state)[1][2];
  313. (*state)[1][2] = (*state)[3][2];
  314. (*state)[3][2] = temp;
  315. // Rotate third row 3 columns to right
  316. temp = (*state)[0][3];
  317. (*state)[0][3] = (*state)[1][3];
  318. (*state)[1][3] = (*state)[2][3];
  319. (*state)[2][3] = (*state)[3][3];
  320. (*state)[3][3] = temp;
  321. }
  322. // Cipher is the main function that encrypts the PlainText.
  323. static void Cipher(void) {
  324. uint8_t round = 0;
  325. // Add the First round key to the state before starting the rounds.
  326. AddRoundKey(0);
  327. // There will be Nr rounds.
  328. // The first Nr-1 rounds are identical.
  329. // These Nr-1 rounds are executed in the loop below.
  330. for (round = 1; round < Nr; ++round) {
  331. SubBytes();
  332. ShiftRows();
  333. MixColumns();
  334. AddRoundKey(round);
  335. }
  336. // The last round is given below.
  337. // The MixColumns function is not here in the last round.
  338. SubBytes();
  339. ShiftRows();
  340. AddRoundKey(Nr);
  341. }
  342. static void InvCipher(void) {
  343. uint8_t round = 0;
  344. // Add the First round key to the state before starting the rounds.
  345. AddRoundKey(Nr);
  346. // There will be Nr rounds.
  347. // The first Nr-1 rounds are identical.
  348. // These Nr-1 rounds are executed in the loop below.
  349. for (round = (Nr - 1); round > 0; --round) {
  350. InvShiftRows();
  351. InvSubBytes();
  352. AddRoundKey(round);
  353. InvMixColumns();
  354. }
  355. // The last round is given below.
  356. // The MixColumns function is not here in the last round.
  357. InvShiftRows();
  358. InvSubBytes();
  359. AddRoundKey(0);
  360. }
  361. /*****************************************************************************/
  362. /* Public functions: */
  363. /*****************************************************************************/
  364. #if defined(ECB) && (ECB == 1)
  365. void AES_ECB_encrypt(const uint8_t *input, const uint8_t *key, uint8_t *output, const uint32_t length) {
  366. // Copy input to output, and work in-memory on output
  367. memcpy(output, input, length);
  368. state = (state_t *) output;
  369. Key = key;
  370. KeyExpansion();
  371. // The next function call encrypts the PlainText with the Key using AES algorithm.
  372. Cipher();
  373. }
  374. void AES_ECB_decrypt(const uint8_t *input, const uint8_t *key, uint8_t *output, const uint32_t length) {
  375. // Copy input to output, and work in-memory on output
  376. memcpy(output, input, length);
  377. state = (state_t *) output;
  378. // The KeyExpansion routine must be called before encryption.
  379. Key = key;
  380. KeyExpansion();
  381. InvCipher();
  382. }
  383. #endif // #if defined(ECB) && (ECB == 1)
  384. #if defined(CBC) && (CBC == 1)
  385. static void XorWithIv(uint8_t *buf) {
  386. uint8_t i;
  387. for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes!
  388. {
  389. buf[i] ^= Iv[i];
  390. }
  391. }
  392. void AES_CBC_encrypt_buffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *iv) {
  393. uintptr_t i;
  394. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  395. // Skip the key expansion if key is passed as 0
  396. if (nullptr != key) {
  397. Key = key;
  398. KeyExpansion();
  399. }
  400. if (iv != 0) {
  401. Iv = (uint8_t *) iv;
  402. }
  403. for (i = 0; i < length; i += BLOCKLEN) {
  404. memcpy(output, input, BLOCKLEN);
  405. XorWithIv(output);
  406. state = (state_t *) output;
  407. Cipher();
  408. Iv = output;
  409. input += BLOCKLEN;
  410. output += BLOCKLEN;
  411. //printf("Step %d - %d", i/16, i);
  412. }
  413. if (extra) {
  414. memcpy(output, input, extra);
  415. memset((output + extra), 0, (BLOCKLEN - extra));
  416. XorWithIv(output);
  417. state = (state_t *) output;
  418. Cipher();
  419. }
  420. }
  421. void AES_CBC_decrypt_buffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *iv) {
  422. uintptr_t i;
  423. uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */
  424. // Skip the key expansion if key is passed as 0
  425. if (nullptr != key) {
  426. Key = key;
  427. KeyExpansion();
  428. }
  429. // If iv is passed as 0, we continue to encrypt without re-setting the Iv
  430. if (iv != nullptr) {
  431. Iv = (uint8_t *) iv;
  432. }
  433. for (i = 0; i < length; i += BLOCKLEN) {
  434. memcpy(output, input, BLOCKLEN);
  435. state = (state_t *) output;
  436. InvCipher();
  437. XorWithIv(output);
  438. Iv = input;
  439. input += BLOCKLEN;
  440. output += BLOCKLEN;
  441. }
  442. if (extra) {
  443. memcpy(output, input, extra);
  444. state = (state_t *) output;
  445. InvCipher();
  446. }
  447. }
  448. #endif // #if defined(CBC) && (CBC == 1)
  449. #if defined(CTR) && (CTR == 1)
  450. /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
  451. void AES_CTR_xcrypt_buffer(uint8_t *output, uint8_t *input, uint32_t length, const uint8_t *key, const uint8_t *nonce) {
  452. uint8_t buffer[BLOCKLEN], counter[BLOCKLEN];
  453. memcpy(counter, nonce, BLOCKLEN);
  454. Key = key;
  455. KeyExpansion();
  456. int j;
  457. unsigned i;
  458. for (i = 0; i < length; ++i) {
  459. if ((i & (BLOCKLEN - 1)) == 0) {
  460. memcpy(buffer, counter, BLOCKLEN);
  461. state = (state_t *) buffer;
  462. Cipher();
  463. /* Increment counter and handle overflow */
  464. for (j = (BLOCKLEN - 1); j >= 0; --j) {
  465. counter[j] += 1;
  466. /* Break if no overflow, keep going otherwise */
  467. if (counter[j] != 0) {
  468. break;
  469. }
  470. }
  471. }
  472. output[i] = (input[i] ^ buffer[(i & (BLOCKLEN - 1))]);
  473. }
  474. }
  475. #endif // #if defined(CTR) && (CTR == 1)